
1All rights reserved. 2013 © ZeroTurnaround OÜ

Lambdas, defauLt methods and buLk 
data operations
by Anton Arhipov

JAvA 8 reveAled



2All rights reserved. 2013 © ZeroTurnaround OÜ

introduction
to Java 8  1-2 
pArt i
Lambdas in Java 8  3-10

pArt ii 
defauLt methods  12-15

pArt iii 
buLk data operations  16-21

too long, didn't reAd (tl;dr)
summary, ConCLusion and a ComiC ;-)   22-23

tAble of contents



3All rights reserved. 2013 © ZeroTurnaround OÜ

introduction
to Java 8

I proposed to delay the release of Java 8 in order to finish Project 
Lambda, which has been delayed due to Oracle’s renewed focus on 
the security of the Java Platform. Thanks to everyone who respond-
ed to that proposal, in comments on my blog entry, on Twitter, and 
elsewhere. The feedback was generally in favor, though under-
standably tinged with disappointment. As of today we have a new 
plan of record: The target release date for Java 8 is now 2014/3/18.

Mark reinhold
Chief Architect of the Java Platform Group at Oracle
http://mreinhold.org/blog/hold-the-train

http://mreinhold.org/blog/hold-the-train


1All rights reserved. 2013 © ZeroTurnaround OÜ

I've been writing about this in bits and pieces for a few months now, and 
wanted to pull it all together into a single publication (you can download 
our pretty PDF version as well). I'm talking about Java 8, the long-awaited 
release. And even though some delays have occurred along the way, 
many believe it's going to be worth it because of three major additions 
to the language: Lambdas, default (or defender) methods, and bulk data 
operations.

In case you're hearing about it for the first time, Project Lambda is the 
major theme in the upcoming Java 8 and probably the most awaited feature 
for Java developers. Lambdas, as a language feature, do not come alone: to 
get most out of lambdas, you're gonna need interface improvements for the 
standard JDK libraries.

The main driver behind the new lambda feature et al is the hardware 
trend of going towards multi-core. Chip designers have nowhere to go 
but parallel, and software developers must find out a better way to utilize 
the features of the underlying hardware. For application developers, and 
in our case Java developers, need simple parallel libraries to make their 
work more efficient. The obvious place to start for such an evolution is the 
parallelization of collections. Lambdas, it turns out, are great for improving 
the readability of your code and the expressiveness of the language.

It would be fair to say that without more language support for parallel 
idioms, people will instinctively reach for serial idioms. Hence, the new 
parallel idioms should be simple, intuitive and easy to use.
The code that we write today is inherently serial. Consider the following 
example:

List persons = asList(new Person("Joe"), new Person("Jim"), 

new Person("John"));

for(Person person : persons) {

  doSomething(person);

}

Historically, Java collections were not capable of expressing internal 
iterations, as the only way to describe an iteration flow was the for (or 
while) loop. The example above describes an iteration over the collection 
of elements and there's no good way to express that the elements of 
the collection could be processed concurrently. However, with the new 
additions to the Java language, we could describe the same operation in a 
slightly different way:

List persons = asList(new Person("Joe"), new Person("Jim"), new 
Person("John"));
persons.forEach(this::doSomething);

http://openjdk.java.net/projects/lambda/


2All rights reserved. 2013 © ZeroTurnaround OÜ

Now, if the underlying library implementation actually supports parallel 
operations, the elements of the collection could be processed concurrently. 
We can just pass the operation into the foreach method and rely on it to 
perform computation for us. All the new language features that are being 
added to Java 8 are actually the tools to enable the path to multi-code and 
parallel libraries.

In this investigation, we provide the overview of the new language features 
in Java 8, such as lambda expressions and default methods. And as the goal 
of these language changes is to improve collections library, we will also 
cover some of new stuff in that area.

Here's what you will learn about by reading this Rebel Labs report:

lambdas in Java 8: lambda syntax, SAM types, functional interfaces.

default methods: the what, why, and how.

bulk data operations for Java collections: the new way to express 
operations for data processing.

Although Java 8 is yet to be released, it is still possible to get a taste of what 
it will look like by downloading the early access binaries for all the target 
platforms from http://jdk8.java.net.

*Note: Feel free to access the same-titled HTML version of this document to extract code snippets more conveniently

https://jdk8.java.net/


3All rights reserved. 2013 © ZeroTurnaround OÜ

pArt i
GettinG started
In this part we are going to take a look at the syntax of the lambda expressions. 
We'll point the transition path from the traditional old-school Java syntax to the 
brand new lambda syntax.

We will also take a look under the covers  to see how lambdas are represented 
by the runtime and what bytecode instructions are involved.



4All rights reserved. 2013 © ZeroTurnaround OÜ

If you are familiar with other languages that include lambda expressions, such as Groovy or Ruby, you might be 
surprised at first that it is not as simple in Java. In Java, lambda expression is sAM type, which is an interface with a 
single abstract method (yes, interfaces can include non-abstract methods now (default/defender methods which we'll 
go over later in the text).

getting started

For instance, the well known Runnable interface is perfectly suitable for 
serving as a SAM type:

Runnable r = () -> System.out.println("hello lambda!");

Or the same could be applied to the Comparator interface:

Comparator cmp = (x, y) -> (x < y) ? -1 : ((x > y) ? 1 : 0);

The same can be written as follows:

Comparator cmp = (x, y) -> {
    return (x < y) ? -1 : ((x > y) ? 1 : 0);
};

So it seems like the one-liner lambda expressions have implicit return 
for the statement.Let me remind you how the same comparator code is 
implemented in the pre-Java 8 syntax:

Comparator cmp = new Comparator() {
  @Override
  public int compare(Integer x, Integer y) {
    return (x < y) ? -1 : ((x > y) ? 1 : 0);
  }

};

As you can see, there's a good portion of the code that is identical in both 
examples, and that is the real code--the functional part of the comparator:

(x < y) ? -1 : ((x > y) ? 1 : 0)

Basically, what we care about when transforming the old-style Java syntax to 
the lambda syntax is the set of the parameter of the interface method, and 
the functional part itself.

Let's take a look at another example. What if I want to write a method that 
can accept a lambda expression as a parameter? Well, you have to declare 
the parameter as a functional interface, and then you can pass the lambda 
in:

interface Action {
  void run(String param);

}

public void execute(Action action){
  action.run("Hello!");
}

http://www.google.com/url?q=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F6%2Fdocs%2Fapi%2Fjava%2Flang%2FRunnable.html&sa=D&sntz=1&usg=AFQjCNHJUc_J4C14DErRjWlPOuaEVKnNQQ


5All rights reserved. 2013 © ZeroTurnaround OÜ

If we want to call the execute(..) method, we would normally pass it an 
anonymous implementation of the Action interface:

execute(new Action {
  public void run(String param){
    System.out.println(param);
  }

});

But as we now have a functional interfaces type as a parameter, we can 
invoke the execute(..) method as follows:

execute((String param) -> System.out.println(param));

Not that we can actually amend the lambda parameter type declaration:

execute(param -> System.out.println(param));

Generally, the rule is as follows: you either declare the types of all the 
parameters for the lambda, or amend all of them.

Effectively, the same expression can be replaced with a method reference 
since it is just a single method call with the same parameter as is:

execute(System.out::println);

However, if there's any transformations going on with the argument, we 
can't use method references and have to type the full lambda expression 
out:

execute(s -> System.out.println("*" + s + "*"));

The syntax is rather nice and we now have quite an elegant solution for 
lambdas in the Java language despite the fact Java doesn’t have functional 
types per se.



6All rights reserved. 2013 © ZeroTurnaround OÜ

As we learned, the runtime representation of a lambda is a functional interface (or a SAM type), an interface that defines only one abstract 
method. And although JDK already includes a number of interfaces, like Runnable and Comparator, that match the criteria, it is clearly not 
enough for API evolution. It just wouldn’t be as logical if we started using Runnables all around the code.

There’s a new package in JDK8, java.util.function, that includes a number of functional interfaces that are intended to be used by the new 
API. We won’t list all of them here – just do yourself a favour and study the package yourself :)

functional interfaces

Here's just a few interesting interfaces defined in the above mentioned 
package of the JDK library:

consumer<t> - performs an action on type T without returning a result.
supplier<t> - returns an instance of type T, no input required.
predicate<t> - consumes an instance of type T as a parameter and 
produces boolean value.
function<t,r> - takes instance of type T as a parameter and produces 
an instance of type R as a result.

There are over 40 new functional interfaces defined in the java.util.
function package. Often the intention of the interface can be derived 
from the name. For instance, BiFunction is very similar to the Function 
interface mentioned above, with the only difference that it takes two input 
parameters instead of one.

An other common pattern that we could see in the new set of interfaces 
is when an interface extends the other interface in order to define the 
same type for multiple parameters. For instance, binaryoperator extends 
BiFunction, and the purpose is just to ensure that the two input arguments 
would be of the same type.

@FunctionalInterface

public interface BinaryOperator extends BiFunction<T,T,T> {}

To emphasize the intention of an interface to be used as a functional one, 
the new @FunctionalInterface annotation can be applied to prevent your 
team mates from adding new method declarations into the interface. 
Aside of its runtime presence the annotation is used by javac to verify if 
the interface is really a functional interface and there's no more than one 
abstract method in it.
The following code will not compile:

@FunctionalInterface
interface Action {
  void run(String param);
  void stop(String param);
}

The compiler throw an error:

java: Unexpected @FunctionalInterface annotation
    Action is not a functional interface
    multiple non-overriding abstract methods found in interface 

Action

But the following will compile just fine:

@FunctionalInterface
interface Action {
  void run(String param);
  default void stop(String param){}
}

http://docs.oracle.com/javase/6/docs/api/java/lang/Runnable.html
http://docs.oracle.com/javase/6/docs/api/java/util/Comparator.html
http://download.java.net/jdk8/docs/api/java/util/function/package-summary.html
http://download.java.net/jdk8/docs/api/java/util/function/BiFunction.html
http://download.java.net/jdk8/docs/api/java/util/function/BinaryOperator.html
http://download.java.net/jdk8/docs/api/java/util/function/Function.html
http://download.java.net/jdk8/docs/api/java/lang/FunctionalInterface.html


7All rights reserved. 2013 © ZeroTurnaround OÜ

If a lambda expression accesses a non-static variable or an object that is 
defined outside of lambda body, then we have a situation when the lambda 
expression captures the outer scope, i.e. it is a capturing lambda.

capturing variables

Consider the comparator example:

int minus_one = -1;
int one = 1;
int zero = 0;
Comparator cmp = (x, y) -> (x < y) ? minus_one : ((x > y) ? one : zero);

In order for this lambda expression to be valid, the variables minus_one, one and zero, it captures must be 
"effectively final". It means that the variables should either be declared final, or they should not be re-assigned.

In the examples above, the interfaces were used as parameters of some other method. However, the use of the 
functional interface is not constrained to a parameter but it also can be a return type of a method. It means that we 
can actually return a lambda from a method:

lambdas as return values

public class ComparatorFactory {
  public Comparator makeComparator(){
    return Integer::compareUnsigned;
  }
}

The example above demonstrates a valid code of a method that returns a 
method reference. In fact, method reference cannot be returned from a 
method just like that. Instead, the compiler will generate code, using the 

invokedynamic bytecode instruction, to evaluate it to a method call that 
returns an instance of a comparator interface. So the client code will just 
assume it works with an interface:

Comparator cmp =
    new ComparatorFactory().makeComparator();
    cmp.compare(10, -5); // -1



8All rights reserved. 2013 © ZeroTurnaround OÜ

The code snippet used in the previous section, produces a Comporator instance that could be used by the client code. It all 
works beautifully. However, there's one serious drawback - if we try to serialize the comparator instance the code will throw 
NotSerializableException.

functional interfaces

By default, lambdas could not be made serializable as it would be a security 
threat. To fix this issue, the so-called type intersection was introduced to 
Java 8:

public class ComparatorFactory {
  public Comparator makeComparator() {
    return (Comparator & Serializable) Integer::compareUnsigned;
  }
}

Serializable interface is generally know as a marker interface - it does 
not declare any methods. It can also be referred as ZAM (Zero Abstract 
Methods) type.

The general rule of application for the type intersection is as follows:
sAM & ZAM1 & ZAM2 & ZAM3

It means that if the result is of SAM type, then we can "intersect" it with one 
or more ZAM types. Effectively, we now say that the resulting instance of the 
comparator interface is now also serializable.
By casting the result as shown above, the compiler generates one more 
method into the compiled class:

private static java.lang.Object $deserializeLambda$(java.lang.
invoke.SerializedLambda);

Again, by applying the invokedynamic bytecode instruction trickery, the 
compiler will bind the invocation of $deserializalambda$(..) method 
when an instance of the comparator is created by makecomparator() 
method.

http://docs.oracle.com/javase/6/docs/api/java/io/NotSerializableException.html


9All rights reserved. 2013 © ZeroTurnaround OÜ

Let's take a look under the covers now. It would be interesting to see, how the 
code is actually compiled when we use lambda expressions in our code.

decompiling lambdas

Currently (as of Java 7 and before), if you wanted to emulate lambdas in Java, 
you have to define an anonymous inner class. This results in a dedicated class 
file after compilation. And if you have multiple such classes defined in the code 
they just get a number suffix in the name of the class file. What about lambdas?
Consider code like this:

public class Main {

  @FunctionalInterface
  interface Action {
    void run(String s);
  }

  public void action(Action action){
    action.run("Hello!");
  }

  public static void main(String[] args) {
    new Main().action((String s) -> System.out.print("*" + s + "*"));
  }

}

The compilation produces two class files: Main.class and Main$Action.
class, and no numbered class which would usually appear for the anonymous 
class implementation. So there must be something in Main.class now that 
represents the implementation of the lambda expression that I've defined in 
main method.

$ javap -p Main

Warning: Binary file Main contains com.zt.Main

Compiled from "Main.java"
public class com.zt.Main {
  public com.zt.Main();
  public void action(com.zt.Main$Action);
  public static void main(java.lang.String[]);
  private static java.lang.Object lambda$0(java.lang.String);
}

Aha! There’s a generated method lambda$0 in the decompiled class! The 
-c -v switches will give us the real bytecode along with the constants pool 
definitions.

The main method reveals that invokedynamic is now issued to dispatch the 
call:

public static void main(java.lang.String[]);
   Code:
    0: new            #4       // class com/zt/Main
    3: dup
    4: invokespecial  #5       // Method "<init>":()V
    7: invokedynamic  #6,  0   // InvokeDynamic #0:lambda:()Lcom/
zt/Main$Action;
   12: invokevirtual  #7       // Method action:(Lcom/zt/
Main$Action;)V
   15: return

And in the constant pool it is possible to find the bootstrap method that 
links it all at runtime:



10All rights reserved. 2013 © ZeroTurnaround OÜ

BootstrapMethods:
  0: #40 invokestatic java/lang/invoke/LambdaMetafactory.metaFactory:(      \
      Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;             \
      Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;          \
      Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)         \
      Ljava/lang/invoke/CallSite;
  Method arguments:
    #41 invokeinterface com/zt/Main$Action.run:(Ljava/lang/String;)Ljava/lang/Object;
    #42 invokestatic com/zt/Main.lambda$0:(Ljava/lang/String;)Ljava/lang/Object;
    #43 (Ljava/lang/String;)Ljava/lang/Object;

You can see that MethodHandle API is used all around but we won’t dive in this right now. For now 
we can just confirm that the definition refers to the generated method lambda$0.

What if I define my own static method with the same name? lambda$0 is a valid identifier after all! 
So I defined my own lambda$0 method:

public static void lambda$0(String s){
  return null;
}

With this compilation failed, not allowing me to have this method in the code:

java: the symbol lambda$0(java.lang.String) conflicts with a

        compiler-synthesized symbol in com.zt.Main

It actually tells us that lambdas are captured before the other structures in the class during the 
compilation.

suMMAry
Drawing a parallel with Part 1 of this report, , we can definitely say that lambdas will have a great 
impact on Java very soon. The syntax is quite nice and once developers realize that these features 
provide value to their productivity, we will see a lot of code that leverages these features.



11All rights reserved. 2013 © ZeroTurnaround OÜ

http://zeroturnaround.com/software/jrebel/campaigns/devsbucketlist/?utm_campaign=dbl&utm_source=rl


12All rights reserved. 2013 © ZeroTurnaround OÜ

pArt ii
defauLt methods
Once published, it is impossible to add methods to an interface 
without breaking the existing implementations. The purpose of default 
methods, introduced in Java 8, is to enable interfaces to evolve without 
introducing incompatibility with existing implementations.



13All rights reserved. 2013 © ZeroTurnaround OÜ

Suppose Java 8 is out and has lambdas. Now you would like to start using 
lambdas and the most obvious use case for that is to apply a lambda to 
every element of a collection.

List<?> list = ...
list.forEach(...); // lambda code goes here

the foreach isn’t declared by java.util.list nor the java.util.collection 
interface yet. One obvious solution would be to just add the new method 
to the existing interface and provide the implementation where required 
in the JDK. However, once published, it is impossible to add methods to 
an interface without breaking the existing implementation.

So it’d be really frustrating if we had lambdas in Java 8 but couldn’t use 
those with the standard collections library since backwards compatibility 
can’t be sacrificed.

Let's start with the simplest example possible: an interface A, and a 
class clazz that implements interface A.

public interface A {
  default void foo(){
     System.out.println("Calling A.foo()");
  }
}

public class Clazz implements A {
}

The code compiles even though Clazz does not implement method foo(). 
method foo() default implementation is now provided by interface A.

And the client code that uses the example:

Clazz clazz = new Clazz();

clazz.foo(); // Calling A.foo()

There is one common question that people ask about default methods 
when they hear about the new feature for the first time: “What if the class 
implements two interfaces and both those interfaces define a default method 
with the same signature?”

Due to the problem described above a new concept was introduced. 
virtual extension methods, or, as they are often called, defender 
methods, can now be added to interfaces providing a default 
implementation of the declared behavior.

Simply speaking, interfaces in Java can now implement methods. 
The benefit that default methods bring is that now it’s possible to 
add a new default method to the interface and it doesn’t break the 
implementations.

The default methods isn’t the language feature that would be appropriate 
to use every day, but it is an essential feature for Java Collections API 
update to be able to use lambdas naturally.

Why default methods?

defenders 101



14All rights reserved. 2013 © ZeroTurnaround OÜ

Let’s use the previous example to illustrate this situation:

public interface A {
  default void foo(){
    System.out.println("Calling A.foo()");
  }
}

public interface B {
  default void foo(){
    System.out.println("Calling B.foo()");
  }
}

public class Clazz implements A, B {
}

This code fails to compile with the following result:

java: class Clazz inherits unrelated defaults for foo() from 
types A and B

To fix that, in Clazz, we have to resolve it manually by overriding the 
conflicting method:

public class Clazz implements A, B {
    public void foo(){}
}

But what if we would like to call the default implementation of method 
foo() from interface A instead of implementing our own. It is possible to 
refer to A#foo() as follows:

public class Clazz implements A, B {
  public void foo(){
    A.super.foo();
  }
}

The real examples of the the default method implementations can 
be found in Jdk8. Going back to the example of foreach method for 
collections, we can find its default implementation in java.lang.iterable 
interface:

@FunctionalInterface
public interface Iterable {
  Iterator iterator();

  default void forEach(Consumer<? super T> action) {
    Objects.requireNonNull(action);
    for (T t : this) {
      action.accept(t);
    }
  }
}

the foreach method takes java.util.function. Consumer functional 
interface type as a parameter which enables us to pass in a lambda or a 
method reference as follows:

List<?> list = ...
list.forEach(System.out::println);

https://jdk8.java.net/
http://download.java.net/jdk8/docs/api/java/util/function/Consumer.html


15All rights reserved. 2013 © ZeroTurnaround OÜ

Let’s take a look on how the default methods are actually invoked.

From the client code perspective, default methods are just ordinary 
virtual methods. Hence the name - virtual extension methods. So in case 
of the simple example with one class that implements an interface with 
a default method, the client code that invokes the default method will 
generate invokeinterface at the 
call site.

A clazz = new Clazz();
clazz.foo(); // invokeinterface foo()

Clazz clazz = new Clazz();
clazz.foo(); // invokevirtual foo()

In case of the default methods conflict resolution, when we override 
the default method and would like to delegate the invocation to one 
of the interfaces, the invokespecial is inferred as we would call the 
implementation specifically:

public class Clazz implements A, B {
  public void foo(){
    A.super.foo(); // invokespecial foo()
  }
}

Here’s the javap output:

public void foo();
 Code:
  0: aload_0
  1: invokespecial #2    // InterfaceMethod A.foo:()V
  4: return

As you can see, invokespecial instruction is used to invoke the interface 
method foo(). This is also something new from the bytecode point of 
view as previously you would only invoke methods via super that points 
to a class (parent class), and not to an interface.

suMMAry
Default methods are an interesting addition to the Java language. You 
can think of them as a bridge between lambdas and JDK libraries. The 
primary goal of default methods is to enable an evolution of standard JDK 
interfaces and provide a smooth experience when we finally start using 
lambdas in Java 8.

defenders 101



16All rights reserved. 2013 © ZeroTurnaround OÜ

pArt iii
buLk data operations for 
Java coLLections
The goal of bulk data operations is to provide new features for data processing 
utilizing lambda functions including parallel operations. The parallel implementation 
is the central element of this feature. It builds upon the java.util.concurrency Fork/Join 
implementation introduced in Java 7.



17All rights reserved. 2013 © ZeroTurnaround OÜ

bulk operations -  what’s in it?

stream api

As the original change spec says, the purpose of bulk operations is to:

Add functionality to the Java Collections Framework for bulk operations upon data. This is commonly referenced as “filter/map/
reduce for Java.” The bulk data operations include both serial (on the calling thread) and parallel (using many threads) versions of the 
operations. Operations upon data are generally expressed as lambda functions.

With the addition of lambdas to Java language and the new API for collections, we will be able to leverage parallel features of 
the underlying platform in a much more efficient way.

the new java.util.stream package has been added to JDK which allows us 
to perform filter/map/reduce-like operations with the collections in Java 
8.

The Stream API would allow us to declare either sequential or parallel 
operations over the stream of data:

List persons = ..

// sequential version
Stream stream = persons.stream();

//parallel version
Stream parallelStream = persons.parallelStream();

A stream is something like an iterator. However, a stream can only be 
traversed once, then it’s used up. Streams may also be infinite, which 
basically means that streams are “lazy” - we never know in advance, how 
many elements we will have to process.

the java.util.stream.Stream interface serves as a gateway to the bulk data 
operations. After the reference to a stream instance is acquired, we can 
perform the interesting tasks with the collections.

One important thing to notice about Stream API is that the source data is 
not mutated during the operations. This is due to the fact that the source 
of the data might not exist as such, or the initial data might be required 
somewhere else in the application code.

http://download.java.net/jdk8/docs/api/java/util/stream/package-summary.html
http://download.java.net/jdk8/docs/api/java/util/stream/Stream.html


18All rights reserved. 2013 © ZeroTurnaround OÜ

stream sources

intermediate operations

Streams can use different sources to consume data and the standard 
JDK API is extended with the new methods to make the experience more 
pleasant.

First source of data for streams is, of course, collections:

List list;
Stream stream = list.stream();

An other interesting source of data are so-called generators:

Random random = new Random();

Stream randomNumbers = Stream.generate(random::nextInt);

Intermediate operations are used to described the transformations that 
should be performed over the stream of data. The filter(..) and map(..) 
methods in the good examples of intermediate operations. The return type of 
these methods is stream, so that it would allow chaining of more operations.
Here’s a list of some useful intermediate operations:

filter excludes all elements that don’t match a Predicate.

map perform transformation of elements using a Function.

flatMap transforms each element into zero or more elements by way of 
another Stream.

peek perform some action on each element as it is encountered.

distinct excludes all duplicate elements according to their equals(..)behavior.

There’s a number of utility methods to help defining the ranges of data:

IntStream range = IntStream.range(0, 50, 10);

range.forEach(System.out::println); // 0, 10, 20, 30, 40

Also, some of the existing classes in the standard library. For instance, 
Random class has been extended with some useful methods:

new Random()
  .ints()             // generate a stream of random integers
  .limit(10)          // we only need 10 random numbers
  .forEach(System.out::println);

sorted ensures that stream elements in subsequent operations are \
encountered according to the order imposed by a Comparator.

limit ensures that subsequent operations only see up to a maximum 
number of elements.
substream ensure that subsequent operations only see a range (by 
index) of elements.

Some of the operations, like sorted, distinct and limit are stateful, meaning 
the resulting stream of these operations depend on the values that the 
operation processed previously. As the Javadoc says, all intermediate 
operations are lazy. Let’s take a look at some of the operations in more 
details.

http://download.java.net/jdk8/docs/api/java/util/stream/Stream.html
http://download.java.net/jdk8/docs/api/java/util/function/Predicate.html
http://download.java.net/jdk8/docs/api/java/util/function/Function.html
http://docs.oracle.com/javase/6/docs/api/java/util/Comparator.html
http://download.java.net/jdk8/docs/api/java/util/stream/package-summary.html


19All rights reserved. 2013 © ZeroTurnaround OÜ

filter
Filtering a stream of data is the first natural operation that we would need. stream interface 
exposes a filter(..) method that takes in a Predicate SAM that allows us to use lambda 
expression to define the filtering criteria:

List persons = ...
Stream personsOver18 = persons.stream().filter(p -> p.getAge() > 18);

MAp
Assume we now have a filtered data that we can use for the real operations, say transforming 
the objects. The map operations allows us to apply a function, that takes in a parameter of one 
type, and returns something else. First, let’s see how it would have been described in the good 
‘ol way, using an anonymous inner class:

Stream students = persons.stream()
    .filter(p -> p.getAge() > 18)
    .map(new Function<Person, Student>() {
          @Override
          public Student apply(Person person) {
            return new Student(person);
          }
         });

Now, converting this example into a lambda syntax we get the following:

Stream map = persons.stream()
    .filter(p -> p.getAge() > 18)
    .map(person -> new Student(person));

And since the lambda that is passed to the map(..) method just consumes the parameter 
without doing anything else with it, then we can transform it further to a method reference:

http://download.java.net/jdk8/docs/api/java/util/stream/Stream.html
http://download.java.net/jdk8/docs/api/java/util/stream/Stream.html#filter(java.util.function.Predicate)
http://download.java.net/jdk8/docs/api/java/util/function/Predicate.html
http://download.java.net/jdk8/docs/api/java/util/function/Function.html


20All rights reserved. 2013 © ZeroTurnaround OÜ

terminating operations
Usually, dealing with a stream will involve these steps:

1. Obtain a stream from some source.
2. Perform one or more intermediate operations, like filter, map, etc.
3. Perform one terminal operation.

A terminal operation must be the final operation invoked on a stream. 
Once a terminal operation is invoked, the stream is “consumed” and is no 
longer usable.

There are several types of terminal operations available:

reducers like reduce(..), count(..), findAny(..), findFirst(..) terminate 
stream processing. Depending on the intention, the terminal operation 
can be a short-circuiting one. For instance, findFirst(..) will terminate the 
stream processing as soon as it encounters a matching element.

collectors, as the name implies, are for collecting the processed 
elements into a resulting collection.

foreach performs some action for each element in the stream.

iterators are the good ‘ol way to work with collections if none of the 
options above satisfies our needs.

The most interesting terminal operation type are the so-called 
“collectors”.

collectors
While stream abstraction is continuous by its nature, we can describe 
the operations on streams but to acquire the final results we have to 
collect the data somehow. The Stream API provides a number of so-
called “terminal” operations. The collect() method is one of the terminal 
operations that allow us to collect the results:

List students = persons.stream()
    .filter(p -> p.getAge() > 18)
    .map(Student::new)

    .collect(new Collector<Student, List>() { ... });

Fortunately, in most cases you wouldn’t need to implement the 
Collector interfaces yourself. Instead, there’s a Collectors utility class for 
convenience:

List students = persons.stream()
    .filter(p -> p.getAge() > 18)
    .map(Student::new)

    .collect(Collectors.toList());

Or in case if we would like to use a specific collection implementation for 
collecting the results:

List students = persons.stream()
    .filter(p -> p.getAge() > 18)

    .map(Student::new)
    .collect(Collectors.toCollection(ArrayList::new));

http://download.java.net/jdk8/docs/api/java/util/stream/Stream.html#collect(java.util.stream.Collector)
http://download.java.net/jdk8/docs/api/java/util/stream/Collector.html


21All rights reserved. 2013 © ZeroTurnaround OÜ

parallel & sequential
One interesting feature of the new Stream API is that it doesn’t require to operations to be either parallel 
or sequential from beginning till the end. It is possible to start consuming the data concurrently, then 
switch to sequential processing and back at any point in the flow:

List students = persons.stream()
    .parallel()
    .filter(p -> p.getAge() > 18)  // filtering will be performed concurrently
    .sequential()
    .map(Student::new)
    .collect(Collectors.toCollection(ArrayList::new));

The cool part here is that the concurrent part of data processing flow will manage itself automatically, 
without requiring us to deal with the concurrency issues.



22All rights reserved. 2013 © ZeroTurnaround OÜ

too long, 
didn't reAd (tl;dr)
summary, concLusion, fareweLL 
and a comic



23All rights reserved. 2013 © ZeroTurnaround OÜ

Here are the areas that we have covered that you can expect to see in Java 8: 

1. Lambda expressions
2. Default methods
3. Bulk data operations for Java collections

as we have seen, lambdas are greatly improve readability of the code 
and making Java the language more expressive, especially when we move 
on to new Stream API. default methods, in turn, are essential for API 
evolution, connecting the Collections API with lambdas for our convenience. 
Nevertheless, the ultimate goal of all this new features is to introduce 
parallel libraries and to seamlessly take advantage of the multi-core 
hardware.

I'm gonna make this a really short conclusion here as well, which basically 
comes down to this: the JVM itself is a great piece of engineering, 
whether you want to admit it or not, the Java platform is still alive and 
kicking. These new changes will allow us to leverage the platform and the 
language in a much more efficient way, and will ideally give the critics of 
Java a bit more substance to chew on.

summary of findings and a Goodbye comic ;-) 



24All rights reserved. 2013 © ZeroTurnaround OÜ

Rebel Labs
 is the r

esearch &
 content 

division 
of ZeroTurna

round

Contact 
Us

Estonia
Ülikooli 2, 5th floor
Tartu, Estonia, 51003
Phone: +372 740 4533

Twitter: @Rebel_Labs
Web: http://zeroturnaround.com/rebellabs
Email: labs@zeroturnaround.com

USA
545 Boylston St., 4th flr.
Boston, MA, USA, 02116
Phone: 1(857)277-1199

Czech Republic
Osadní 35 - Building B
Prague, Czech Republic 170 00
Phone: +372 740 4533

https://twitter.com/Rebel_Labs
http://zeroturnaround.com/rebellabs
labs@zeroturnaround.com

