
Copyright © 2007 IBM Corporation and North Carolina State University. (This notice to be removed upon assignment
of copyright to IEEE.)

A Longitudinal Study of the Use of a Test-Driven Development Practice in
Industry

Julio Cesar Sanchez1, Laurie Williams2, and E. Michael Maximilien1

1IBM Corporation
{juliosan, maxim}@{mx1, us}.ibm.com

2Department of Computer Science, North Carolina State University
williams@ncsu.edu

Abstract

Test-Driven Development (TDD) is an agile practice

that is widely accepted and advocated by most agile
methods and methodologists. In this paper, we report
on a longitudinal case study of an IBM team who has
sustained use of TDD for five years and over ten
releases of a Java-implemented product. The team
worked from a design and wrote tests incrementally
before or while they wrote code and, in the process,
developed a significant asset of automated tests. The
IBM team realized sustained quality improvement
relative to a pre-TDD project and consistently had
defect density below industry standards. As a result,
our data indicate that the TDD practice can aid in the
production of high quality products. This quality
improvement would compensate for the moderate
perceived productivity losses. Additionally, the use of
TDD may decrease the degree to which code complexity
increases as software ages.

1. Introduction

Both the initial adoption and the “staying power” of
a new technology adoption (in terms of new processes
and new hardware/software) in an organization can be
tenuous. The presence of a champion1 of the new
technology can aid in promoting and bringing to the
forefront the relative advantage and the results of the
technology transfer [22]. Some other factors that can
affect the ability of an organization to effectively
assimilate a new technology include the perception by
the individuals of the usefulness, ease of use, and the
relative advantage over the old technology [23].

The staying power of test-driven development
(TDD) [4] is evidenced by our five year study of the
Point of Sale (POS) device driver development team at

1 A champion is a respected person who supports the
introduction of the new technology and is willing to remove
obstacles to its adoption

IBM. With TDD, as defined by Beck [4], a software
engineer cycles minute-by-minute between writing unit
tests and writing code. As TDD is considered as much
(or more) a design process as a test process, no formal
design precedes these cycles. Before checking in code
and its associated tests to a code base, software
engineers run all the unit tests in the code base. While
the TDD practice surfaced contemporarily as part of
XP, the practice has been used for decades [10, 17] and
is often used by non-XP teams (for example at
Microsoft [5]) as part of the team’s software
development process.

In this paper, we report on a longitudinal case study
of the IBM team. This team has been using a TDD
practice since 2001 and has produced ten releases of one
medium-scale software project written in Java™. The
team does create an initial design for portions of the
system, and generally writes unit tests incrementally
during (not before) development, as will be discussed.
Specifically, we will examine the following:

o Does the TDD practice aid in the production of a
high quality product?

o What amount of testing is necessary to realize the
benefits of TDD?

o How does the use of TDD impact productivity?
o Can TDD help reduce the inevitable complexity

increase of code as it ages?
We answer these questions based upon the indications
from our longitudinal study involving detailed data
analysis, a survey of developers and testers, and action
research on the part of the first and third authors.

The rest of the paper is organized as follows: Section
2 provides an overview of prior research on TDD.
Section 3 provides the detail of our longitudinal case
study, and Section 4 presents our results. Finally,
Sections 5 and 6 distill some lessons learned through
almost five years of TDD use and conclude this paper.

Copyright © 2007 IBM Corporation and North Carolina State University. (This notice to be removed upon assignment
of copyright to IEEE.)

2. Prior Research on TDD

 Empirical studies on the effectiveness of TDD have
been conducted in industrial and in academic settings.
In this section, we summarize the results of several of
these studies. The results presented in this paper are
based upon a case study that has been conducted over a
much longer period than any of the results previously
reported.

2.1 Industrial Studies

A set of experiments were run with 24 professional
programmers at three industrial locations, John Deere,
Rolemodel Software, and Ericsson [11, 12]. One group
developed code using the TDD practice while the other
a waterfall-like approach. All programmers practiced
pair programming [24], whereby two programmers
worked at one computer, collaborating on the same
algorithm, code or test. The experiment participants
were provided the requirements for a short program to
automate the scoring of a bowling game in Java [18].
The TDD teams passed 18% more functional black box
test cases when compared with the control group teams.
The experimental results showed that TDD developers
took more time (16%) than control group developers.
However, the variance in the performance of the teams
was large and these results are only directional.
Additionally, the control group pairs did not generally
write any worthwhile automated test cases (though they
were instructed to do so), making the comparison
uneven.

Case studies were conducted of two development
teams at Microsoft (Windows with C++ code and MSN
with C++ and C#) that used the TDD practice [5].
Table 1 shows a comparison of the results of these
teams relative to a comparable team in the same
organization that did not use TDD.

 Table 1: Microsoft TDD case studies

 Windows MSN
Test LOC2/Source LOC 0.66 0.89
% block coverage 79% 88%
Development time
(person months)

24 46

Team size 2 12
Decrease in Defects/LOC 0.62 0.76
Increase in development
time

25-35% 15%

A controlled experiment was conducted with 14

voluntary industrial participants [13] in Canada. Half

2 LOC = lines of code

of the participants used a test-first practice, and half of
these used a test-last practice to develop two small
applications that took 90-100 minutes, on average, to
complete. The research indicated little to no
differences in productivity between the methods, but
that test-first may induce developers to create more tests
and to execute them more frequently.

Another controlled experiment was conducted with
28 practitioners at the Soluziona Software Factory in
Spain [7]. Each practitioner completed one
programming task using the TDD practice and one task
using a test-last practice, each taking approximately five
hours. Their research indicated that TDD requires
more development time, but that the improved quality
could offset this initial increase in development time.
Additionally TDD leads developers to design more
precise and accurate test cases.

2.2 Academic Studies

Müller and Hagner conducted a controlled
experiment comparing TDD with traditional
programming [21]. The experiment, conducted with 19
graduate students, measured the effectiveness of TDD
in terms of development time and reliability. The
researchers divided the experimental subjects into two
groups, TDD and control. Each group solved the same
task. The task was to complete a program in which the
specification was given along with the necessary design
and method declarations. The students completed the
body of the necessary methods. The researchers set up
the programming in this manner to facilitate automated
acceptance testing and reliability analysis. The
researchers concluded that writing programs in test-first
manner neither leads to quicker development nor
provides an increase in quality.

Janzen and Saiedian conducted a controlled
experiment with ten students in an undergraduate
software engineering class to examine the effects of
TDD on internal software design quality [15]. Students
designed and built an HTML pretty-print system that
took between 74 and 190 person-hours. One group
used the TDD practice, one group used a test-last
practice, and a third group did not write any automated
tests. The results indicate that TDD can be an effective
design approach, improving object decomposition, test
coverage, external quality, productivity, and
confidence.

Erdogmus et al. conducted a controlled experiment
of third-year undergraduate students who were taking
an eight-week intensive Java course at Politencnico di
Torino in Italy. Twenty-four students implemented a
bowling game [18] in Java. Eleven completed the task
using a test-first practice and 13 used a test-last practice.

Copyright © 2007 IBM Corporation and North Carolina State University. (This notice to be removed upon assignment
of copyright to IEEE.)

Students were encouraged to complete all work in the
same programming laboratory. The test-first students
on average wrote more tests and, in turn, students who
wrote more tests tended to be more productive.

3. Longitudinal Case Study at IBM

In this section, we present an overview of the IBM

case study. First, we will present contextual
information about the product and the releases under
study, the team, and the TDD practice used. We
complete this section with our research methodology as
well as listing some limitations to our empirical
approach.

3.1 The Project

The project is the development of IBM’s

JavaPOS 3 -compliant device drivers. We have
documented the details of this project and the results of
the first release in [19, 25]. The project consists of the
creation of middleware for devices in the POS domain.
The POS devices are varied and include most devices
necessary for checking out a customer at a typical store.
Examples of such devices are:

• Cash drawer (or till) that allows the store to keep

cash and programmatically open the drawer;
• Scanner to quickly find the unique identifier (or

SKU) of an item and look-up its price, rebates,
description, and other information;

• Magnetic Swipe Reader (MSR) to collect
payments in the form of credit and debit cards;

• Specialized keyboard with keys for various POS
functions in a store, e.g., calculate total; and

• Specialized printers to issue receipts of
transactions formatted with store logo and
information designed to take into account local
laws and policies.

In total the JavaPOS technical standard specification4
amounts to a total of 24 different POS devices each with
an average of 52 properties, 24 methods, and five
events.

The purpose of the IBM team is to implement the
JavaPOS specification for IBM’s POS hardware
devices and platforms (and from now on noted as IBM’s
POS drivers or IBM’s drivers). In the POS domain,
any failure of a device at a retail check out lane can

3 http://www.javapos.org; standard developed jointly by
leading retailers, hardware and software companies
4 defined in in UnifiedPOS standard v1.9.
http://www.nrf-arts.org/UnifiedPOS/

potentially impact the retailer’s bottom line. IBM’s
customers, therefore, have “essential money” at risk if
the JavaPOS device software middleware exhibits
failures when deployed. As such, the IBM POS device
driver team must use procedures to ensure this a high
level of quality.

Since the first release in 1998, the JavaPOS
specification has undergone ten major versions. The
IBM team has kept the release of the IBM POS drivers
in sync with the JavaPOS versions by producing
multiple releases over the years since the first one in
2001. In this paper, we analyze data from all of these
releases.

In Release 1 of the IBM JavaPOS POS drivers, the
initial framework and main devices of the specification
were implemented following the TDD practice. The
subsequent releases typically added new devices but
also implemented new functionality introduced in the
specification. Every release involved some changes in
the developers, project management, and test teams.
This paper focuses on ten releases of the product:
Release 1 in the fourth quarter of 2002 through Release
10 in the fourth quarter of 2006. Development for
Release 1 began one year prior.

3.2 Team

The development team initially consisted of nine

full-time engineers, five in Raleigh, NC, USA and four
in Guadalajara, Mexico. Eventually, engineers in
Martinez, Argentina joined the team. The team size
grew to as many as 17 for Release 7, as shown in Figure
1. All team members had a minimum of a bachelor’s
degree in computer science, electrical, or computer
engineering. Some had Master’s degrees.
Additionally, part-time resources for project
management and for system performance analysis were
allocated. No one on the team had experience with
TDD before the first release, and three were unfamiliar
with Java. The domain knowledge of the developers had
to be built during the design and development phases.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

Release

N
um

be
r

of
 d

ev
el

op
er

s

Raleigh Guadalajara Martinez

Copyright © 2007 IBM Corporation and North Carolina State University. (This notice to be removed upon assignment
of copyright to IEEE.)

Figure 1: Number of JavaPOS developers

Figure 2 shows the quantity of code added in each

release. The product increased from approximately 41
thousand lines of code (KLOC) in Release 1 to
approximately 114 KLOC in Release 10.

In Release 7, a major effort was placed on
refactoring test code, hence the drop in the number of
lines of test code. The refactoring was focused on the
redundancy of the test cases in the POSPrinter driver.
Since IBM supports three different types of printers,
often there were three sets of very similar test cases.
The refactoring removed the redundancy and facilitated
the integration and execution of new tests.

-20000

-10000

0

10000

20000

30000

40000

50000

1 2 3 4 5 6 7 8 9 10

Release

L
in

es
 o

f C
od

e

Source Test
Figure 2: Added Lines of Code

3.3 Testing Practices

In this section, we describe our unit and functional
verification testing practices.

3.3.1 Unit testing practices. With TDD, test cases
were developed incrementally as a means of reducing
ambiguity and to validate the requirements. The
requirements were documented in a full detailed
specification. After creating a “spike” [3] of the
system by implementing an end-to-end service for one
device, each logical portion of the system was layered
and designed using UML class and sequence diagrams.

For each important class, we enforced complete unit
testing. We define important classes to be utility
classes, classes which collaborate with other classes,
and classes that are expected to be reused. We define
complete testing as ensuring that the public interface
and semantics (the behavior of the method as defined in
the specification) of each method were tested utilizing
the JUnit 5 unit testing framework. Each design
document included a unit testing section that listed all

5 http://junit.org

important classes and public methods that would be
tested.

For each public class, we had an associated public
test class; for each public method in the class we had an
associated public test method in the corresponding unit
test class. Our goal was to cover 80 percent of the
important classes by automated unit testing. Some unit
tests also contained methods that tested particular
variations of the behavior, e.g., the printer device has an
asynchronous printing capability and the regular print
methods behaved differently in synchronous and.
asynchronous modes.

To guarantee that all unit tests would be run by all
members of the team, we set up an automated build and
test systems in the geographical locations where the
development teams were located. These systems
would extract all the code from the library build and run
all the unit tests daily. The Apache Ant6 build tool was
used. After each automated build/test run cycle, an
email was sent to all members of the teams listing all the
tests that successfully ran and any errors found. This
automated build and test served us as a daily integration
and validation for the team.

Each of the implemented devices has a set of
methods, properties, and events exposed (following the
JavaBeans 7 specification). The strategy for
implementing the unit tests is to implement a test class
for each device with test methods for each of the
exposed functions. These tests can generally be
divided into two primary categories: automated and
interactive. Automated tests can be executed with the
appropriate device attached and interactive tests require
human interactions to be completed; for instance,
interrogating the human user to plug or unplug a device.
Over time the unit tests were refactored to push
common code into superclasses as well as into utility
classes.

In addition, the team also implemented two other
kinds of tests. First, a series of performance-oriented
unit tests; these are designed and instrumented to
capture performance metrics on the devices at various
levels of the software system. The goals of these tests
are to give a sense of the performance of the drivers as
they are being developed. Our approach and results are
documented in [14]. Second, the team also
implemented unit tests and functional tests for the
supporting classes that enable the drivers to be
cross-bus as well as enable the complete driver package
to support many different hardware platforms and
operating systems, e.g., to enable support different bus
connectivities such as the open USB and RS-232 buses
as well as IBM’s proprietary RS-485 bus.

6 http://ant.apache.org/
7 http://java.sun.com/products/javabeans

Copyright © 2007 IBM Corporation and North Carolina State University. (This notice to be removed upon assignment
of copyright to IEEE.)

3.3.2 Functional verification testing. When the

majority of the device driver code was implemented and
passing their own unit tests and those in the code base,
the device drivers were sent to functional verification
test (FVT). The external FVT team had written black
box test cases based on the functional system
specification and on conversations with developers.
More than half of the FVT tests were automated in part
(requiring human intervention to declare pass/fail)
using TCL or Jacl scripts; the remaining tests were split
fairly evenly between fully automated and fully manual.

Defects identified from running these test cases were
communicated to the code developers via a defect
tracking system. The defects were then categorized by
device. Once 100% FVT tests have been attempted, all
test cases are re-run by the FVT team in a regression
test. (This does not imply that the defects from these
attempted tests are all resolved.)

3.4 Research Methodology

The first author mined the source code repository

and the defect tracking system to obtain quantitative
metrics, such as lines of source code, cyclomatic
complexity, and number of defects for each of the ten
releases. Additionally, the first and third authors were
part of the device driver team and could be considered
action researchers 8 . Their knowledge of the daily
operations of the team is shared throughout this paper.

The second author conducted two web-based
surveys using the SurveyMonkey9 tool. One survey
was for the developers and the other was for the testers.
The purpose of the surveys was to obtain qualitative
information about the use of TDD from the team. The
developer survey was offered to 13 developers and
answered by 11. The tester survey was offered to eight
testers and answered by seven. Primarily, the survey
results are discussed in Section 4.
3.5 Limitations of Case Study

Formal, controlled experiments, such as those
conducted with students or professionals, over
relatively short periods of time are often viewed as
“research in the small” [9]. These experiments may
suffer from external validity limitations (or perceptions
of such). On the other hand, case studies such as ours
can be viewed as “research in the typical” [9].
Concerns with case studies involve the internal validity
of the research, or the degree of confidence and

8 The first author is still part of the development team but the
third author moved on to another position at IBM Research
9 www.surveymonkey.com

generalization in a cause-effect relationship between
factors of interest and the observed results [6].

Case studies often cannot yield statistically
significant results due to a small sample size.
Nonetheless, case studies can provide valuable
information on a new technology or practice. By
performing multiple case studies and recording the
context variables of each case study, researchers can
build up knowledge through a family of experiments [2]
which examine the efficacy of a new practice. We add
to the knowledge about the TDD practice by performing
a case study. We studied the efficacy of TDD within
an IBM development group over five years and multiple
releases.

In XP projects, up-front testing proceeds without any
such “big design up front,” commonly referred to as
BDUF [3]. For this team, the requirements were stable
(due to the need to synch with the JavaPOS standard).
Therefore, the team chose to do up-front design via
UML class and sequence diagrams. Additionally, as
will be discussed, test cases were written incrementally
as the code was being written, not incrementally before
code was written. Our results, therefore, apply to
teams how follow a similar process.

4. Results

In this section, we provide the results of our analysis
of study data. First, we look at the defect density of the
releases. Second, we investigate the impact of TDD on
the team. And finally, we look into the details of how
the team applied TDD as well as the evolution of the
system’s complexity.

4.1 Defect Density

In our survey, 100% of the developers indicated that

writing tests helped them produce a higher quality
product. The developer’s perception was shown to be
correct. We cannot reveal specific proprietary
information (e.g., exact defects/KLOC) about the
quality of the device drivers. However, as will be
discussed, our results indicate that both the external and
the internal defect density across all releases are
significantly lower than the industry averages. The
defect density trends are shown in Figure 3 for both
internally- and externally-discovered defects. Our LOC
measure is non-commented source lines of code.

Copyright © 2007 IBM Corporation and North Carolina State University. (This notice to be removed upon assignment
of copyright to IEEE.)

1 2 3 4 5 6 7 8 9 10

Release

D
ef

ec
ts

/K
L

O
C

Internal External
Figure 3: Defects/KLOC

(Y-axis suppressed to protect proprietary data)

The internally-discovered defects were primarily
discovered in functional, regression, and beta testing
before the official release of the drivers. We had
previously reported [19, 25] that Release 1’s internal
defect density was 40% lower than a prior device driver
project developed in a more traditional, non-TDD
fashion. The prior product already had an internal
defect density superior to the benchmark published by
the Bangalore SPIN Benchmarking group (SPIN) [1] of
8.2 defects/thousand lines of code (KLOC). Internal
defect density decreased with Release 2 and Release 3,
stabilizing in future releases still much below the
internal defect density of Release 1 (and thereby, much
lower than the prior product and the industry standard).

The externally-discovered defects were found and
reported by customers. We compare the external
defect density to industry averages. Capers Jones [16]
reports an average of 0.495 post release defects/function
point. To convert defects/function point to
defects/KLOC, we use a function point conversion
estimate of 60 LOC/function point, published by QSM10
to obtain an industry average of 8.25 defects/KLOC.

While the overall product had a low defect density,
the results of individual device drivers written by
developers that embraced TDD to varying degrees
provide additional information. In Table 2, we provide
data about the five devices with the highest defect
density. In the first column is the perceived
complexity by the first author based upon his extensive
observations of how difficult the device driver was to
implement. The second column provides the relative
cyclomatic complexity11 of the device driver relative to

10 http://www.qsm.com/FPGearing.html
11 Cyclomatic complexity is a measure of the number of
linearly independent paths through a program [9] and is often
used as an internal measure of the actual complexity of
program code. The higher the number the more complex the
software. Absolute numbers are not provided to protect
proprietary information.

the average cyclomatic complexity of the full set of
device drivers (the system average = 1.0). The third
column is the ratio of test LOC to source LOC to be
compared against this ratio for the full set of device
drivers (0.54). Finally, the fourth and fifth columns
provide the number of manual tests and automated tests
for the device, respectively. This measure indicates
both the degree to which the device requires manual
intervention for testing and to which the developer
embraced TDD.

There are some observable trends from the first
author for the devices in this “Bottom 5” list:

o The device and/or design is complex.
o Not enough tests have been defined relative to

other devices.
o The developer avoided running the manual tests

and spending the time to review the output of the
tests.

o The devices were developed by inexperienced
engineers.

Table 2: “Bottom 5” Components with Highest

Defect Density

Perceive
Complx

Relative
Cyclom
Complx

Test
LOC/
Src LOC

Manual
Tests

Automat
Tests

Easy 1.03 0.54 10 116
Medium 1.24 0.09 1 31

Difficult 0.95 0.59 39 350
Medium 1.00 0.22 9 12
Difficult 1.10 0.76 5 232

Similarly, we provide measures for the five
components with the lowest defect density. There are
some observable trends for the devices in this “Top 5”
list:

o The device is well designed.
o There are sufficient tests defined.
o The devices are all developed by experienced

engineers.

Table 3: “Top 5” Component with Lowest Defect
Density

Perceiv
Compl

Relative
Cyclom
Complex

Test
LOC/
Src LOC

Manual
Tests

Automat
Tests

Medium 1.29 0.63 9 134
Medium 0.96 0.88 3 271

Difficult 0.85 1.12 39 168
Medium 1.20 0.13 3 141
Medium 1.06 0.43 0 113

Copyright © 2007 IBM Corporation and North Carolina State University. (This notice to be removed upon assignment
of copyright to IEEE.)

4.2 Details of Testing Effort

How much testing is required to achieve a quality
improvement such as was realized by the IBM team?
Though an inexact measure, Figure 4 shows the result of
computing the ratio of test LOC to source LOC. The
average ratio across all ten releases is 0.61.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

Release

T
es

t L
O

C
/S

ou
rc

e
L

O
C

Test LOC/Source LOC
Figure 4: Test LOC/Source LOC

As indicated earlier, the IBM team did not strictly

follow Beck’s “no design/incrementally write tests
before code” TDD practice. The IBM team worked
from a design document. In our survey, three
developers indicated they wrote tests before code, seven
wrote tests as they wrote the code, and one wrote tests
after finishing about half the code. Most developers
(10 of 11) said they both ran their own tests and the
teams’ tests at least once per day. Developers
indicated little time was spent maintaining legacy tests,
at most one to three hours per week.

4.3 People

Quality at what cost, though? The team did not

keep time records. However, on the survey we asked
the developers for their perception of how much overall
time it took to write the unit tests (Question D8 in the
Appendix). Of the ten developers that answered this
question, one said it took no extra time, one said it took
less than 5% extra time, two said between 5% and 10%,
one said between 11% and 20%, two said between 21%
and 25%, and three said more than 25%. An increase
in quality can pay for moderate productivity losses.
One study [8] indicated that a technology was
economically advantageous although productivity
decreased by 15% due to a reduction of 15% in defects.
Our overall defect density decreased by more than 15%.
Additionally, developers indicated that the use of TDD
got easier over time:

At the beginning, [TDD] demanded more time…
Later it was easy. It pays back when we see
robust code, with better quality.
In the open-ended responses, both the developers

and the testers indicated that the presence of unit tests
allows them to find problems more easily and to avoid
regression defects. Additionally, a majority of the
functional verification and system testers (four of
seven) felt the quality of the software products delivered
from the developers into test was better than other
products they had tested. Of the remaining testers, two
had never tested anything but JavaPOS (so they had no
comparison point), and one felt quality was equal to
other projects he/she had tested. None felt quality was
worse. One tester indicated:

Mainly, the fix for a JavaPOS defect generally
does not break anything else and that fix does
solves the problem described in the defect
description; it is really an exception to have to
re-open a defect due to a defective fix. As far as I
have seen, testing other products of the same sort
there is an important risk that a fix breaks
something else or the fix does not solve the
problem.
The perception of the increase in quality and

decrease in the frustration and time associated with
regression defects would contributed to the “staying
power” of the TDD practice with this team.

4.4 Code Complexity

Often the complexity of software, as measured by

cyclomatic complexity, will increase with each revision
[20]. Conversely our data, shown graphically in Figure
5, indicate very little increase in cyclomatic complexity
over the course of 10 releases. As Test LOC/Source
LOC decreases slightly in Releases 7-10, the
complexity increases slightly. Possibly, the sustained
use of TDD will reduce the increase in complexity as
software ages.

1 2 3 4 5 6 7 8 9 10

Release

Cyclomatic Complexity Test LOC/Source LOC
Figure 5: Complexity Trends

Copyright © 2007 IBM Corporation and North Carolina State University. (This notice to be removed upon assignment
of copyright to IEEE.)

5. Lessons Learned

After five years of applying TDD, we are able to
identify some key lessons learned:

o A passionate champion for the practice and

associated tools is necessary. The champion needs
to be willing to spend the extra time to convince and
help all team members. Over time, the duties of the
champion become easier as other members of the
team will start helping newer members.

o The JUnit framework is a well structured framework
for unit test relative to the ad hoc, “throw away” kind
of testing we had done in the past. Improvements
from what we had previously done involve the ease
of using the assert statements and the automated
check of expected results. The suite of tests become
an asset to the project and can be run repeatedly,
every build.

o Not all tests can be automated. In particular, our
projects have devices that require manual
intervention. For example, a person must swipe a
card for the magnetic stripe reader or visually inspect
what is printed on a receipt that is printed.

o We extended the JUnit framework to handle manual
intervention. We defined a new signature named
itest. An itest might require manual intervention,
but otherwise is similar to a JUnit test.

o Set measurable objectives. Our objective was 80%
code coverage.

o Create a good design and structure of the code using
object-oriented principles (OOP). The use of OOP
leads toward good design habits, such as the use of
the model-view-controller pattern that will allow
more of the code to be tested in an automated fashion.
Maximizing the automated tests is desirable because
manual tests will not be run as often.

o Execute all the tests prior to checking code into the
code base.

o Write the unit tests prior to writing the code. Those
on the team who write the tests prior to the code
found it easier to know that the test was testing what
it was supposed to be testing, because the test would
fail first because the code was not yet implemented..

o Institute a nightly build process that include running
all the unit tests to ensure that the tests are run at least
once/day.

o Create a new test whenever a defect is detected
internally or externally. The developer can learn
about the type of test that should have been written to
prevent the defect from escaping to test or to the
customer and can be more confident in the solution.

6. Conclusions

In this paper, we present the results of a longitudinal
case study of an IBM team that has been practicing
TDD for ten releases over a five-year period. Our
results indicate that the use of TDD can aid a team in
developing a higher quality product. The quality
improvement was not only evident in our metrics but
also to the developers and to the product testers. As
noted in Section 1, perception of usefulness is essential
for the “staying power” of a practice, as has been done
TDD for this IBM team. The developers indicated
there could be some productivity decreases, but the
product lifecycle quality improvement would
compensate for moderate perceived productivity losses.
Additionally, the use of TDD may decrease the degree
to which code complexity increases as software ages.

7. Acknowledgements

We thank the IBM device driver development team

members in Raleigh, NC, Guadalajara, Mexico, and
Martinez, Argentina. We would also like to thank
members of the NC State University RealSearch
research group for their help on the paper.

8. References

Copyright © 2007 IBM Corporation and North Carolina State University. (This notice to be removed upon assignment
of copyright to IEEE.)

[1] Bangalore Benchmarking Special Interest Group,
"Benchmarking of Software Engineering Practices at High
Maturity Organizations," Bangalore Software Process
Improvement Network, 2001.
[2] V. R. Basili, F. Shull, and F. Lanubile, "Building
Knowledge Through Families of Experiments," IEEE
Transactions on Software Engineering, vol. 25, no. 4, 1999,
pp. 456 - 473.
[3] K. Beck, Extreme Programming Explained: Embrace
Change. Reading, Mass.: Addison-Wesley, 2000.
[4] K. Beck, Test Driven Development -- by Example.
Boston: Addison Wesley, 2003.
[5] T. Bhat and N. Nagappan, "Evaluating the efficacy of
test-driven development: industrial case studies," ACM/IEEE
international symposium on International symposium on
empirical software engineering, Rio de Janeiro, Brazil, 2006,
pp. 356 - 363
[6] D. T. Campbell and J. C. Stanley, Experimental and
Quasi-Experimental Design for Research. Boston: Houghton
Mifflin Co., 1963.
[7] G. Canfora, A. Cimitile, F. Garcia, M. Piattini, and C.
A. Visaggio, "Evaluating Advantages of Test Driven
Development: a Controlled Experiment with Professionals,"
International Symposium on Empirical Software Engineering
(ISESE) 2006, Rio de Jaiero, Brazil, 2006, pp. 364-371.
[8] H. Erdogmus and L. Williams, "The Economics of
Software Development by Pair Programmers," The
Engineering Economist, vol. 48, no. 4, 2003, pp. 283-319.
[9] N. E. Fenton and S. L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach: Brooks/Cole, 1998.
[10] D. Gelperin and W. Hetzel, "Software Quality
Engineering," Fourth International Conference on Software
Testing, Washington, DC, June 1987, pp.
[11] B. George, "Analysis and Quantification of Test Driven
Development Approach MS Thesis," North Carolina State
University Computer Science, Raleigh, NC, 2002.
[12] B. George and L. Williams, "An Initial Investigation of
Test-Driven Development in Industry," ACM Symposium on
Applied Computing, Melbourne, FL, 2003, pp. 1135-1139.
[13] A. Geras, M. Smith, and J. Miller, "A Prototype
Empirical Evaluation of Test Driven Development,"
International Symposium on Software Metrics (METRICS),
Chicago, IL, 2004, pp. 405 - 416.
[14] C.-w. Ho, M. J. Johnson, L. Williams, and E. M.
Maximilien, "On Agile Performance Requirements
Specification and Testing," Agile 2006, Minneapolis, MN,
2006, pp. 47-52.
[15] D. S. Janzen and H. Saiedian, "On the Influence of
Test-Driven Development on Software Design," Conference
on Software Engineering Education and Training (CSEET),
Turtle Bay, Hawaii, 2006, pp. 141-148.
[16] C. Jones, Software Assessments, Benchmarks, and Best
Practices. Boston, MA: Addison Wesley, 2000.
[17] C. Larman and V. Basili, "A History of Iterative and
Incremental Development," IEEE Computer, vol. 36, no. 6,
June 2003, pp. 47-56.
[18] R. C. Martin and R. S. Koss, "Engineer Notebook: An
Extreme Programming Episode,"
http://www.objectmentor.com/resources/articles/xpepisode.ht
m, no., 2001.

[19] E. M. Maximilien and L. Williams, "Assessing
Test-driven Development at IBM," International Conference
of Software Engineering, Portland, OR, 2003, pp. 564-569.
[20] A. Monden, S. Sato, and K. Matsumoto, "Capturing
Industrial experiences of software maintenance using product
metrics," 5th World Multi-Conference on Systemics,
Cybernetics and Informatics, Orlando, FL, 2001, pp. pp. 394 -
399.
[21] M. M. Müller and O. Hagner, "Experiment about
Test-first Programming," IEE Proceedings Softwar, vol. 149,
no. 5, 2002, pp. 131-136.
[22] S. L. Pfleeger, "Understanding and improving
technology transfer in software engineering," Journal of
Systems and Software, vol. 47, no. 2-3, July 1999, pp.
111-124.
[23] C. K. Riemenschneider, B. C. Hardgrave, and F. D.
Davis, "Explaining software developer acceptance of
methodologies: a comparison of five theoretical models,"
IEEE Trans. Software Eng., vol. 28, no. 12, December 2002,
pp. 1135 - 1145.
[24] L. Williams and R. Kessler, Pair Programming
Illuminated. Reading, Massachusetts: Addison Wesley, 2003.
[25] L. Williams, E. M. Maximilien, and M. Vouk,
"Test-Driven Development as a Defect-Reduction Practice,"
IEEE International Symposium on Software Reliability
Engineering, Denver, CO, 2003, pp. 34-45.

Appendix

Here we provide the questions asked of the
developers and testers in our surveys.

A.1 Developer Survey

D1. When you develop code, do you work from a
design document?

o No
o Yes, specify what kind of document(s) (e.g.

sequence diagram)
D2. When do you write automated unit tests?

o before you write the code
o as you write the code
o after you finish some code? If you write unit tests

after you finish writing code, how much code to
you finish before you write some tests?

D3. What do you base your unit tests on? (check all
that apply)

o The structure of the code
o The requirement document
o Important scenarios
o Other (specify)

D4. How do you decide when you have written
enough unit tests?

o Code coverage
o Gut feel
o Run out of time
o Other (specify)

Copyright © 2007 IBM Corporation and North Carolina State University. (This notice to be removed upon assignment
of copyright to IEEE.)

D5. How often do you run your own unit tests?
o Once/day
o More than once/day
o Less than once/day
o Other (specify)

D6. How often do you run the unit tests from others in
our team?

o Once/day
o More than once/day
o Less than once/day
o Other (specify)

D7. Overall, do you think writing unit tests helps you
produce a higher quality product?

o No
o Yes
o Comment

D8. From a product lifecycle perspective (e.g. during
development + defect fix time when your code is in test
+ defect fix time when your code is in the field), how
much time do you feel writing unit tests adds to your
time?

o It doesn’t
o <5%
o 5%-10%
o 11%-20%
o 21%-25%
o More than 25%

D9. Comment on whether you think your bank of unit
tests for is helpful for regression testing, makes you feel
more courageous when you make a change, or any other
cost/benefit of automated unit testing?
D10. Comment on the effort and payoff required to
maintain “legacy” unit test code. Also comment on
how long you have worked on this project/what
releases.

A.2 Tester Survey

T1. How long have you been a tester for JavaPOS
device drivers?

o Three years or more
o One to two years
o Less than one year

T2. What types of tests do you write (check all that
apply):

o integration test
o functional test
o system test

T3. What do you base your test cases on (check all that
apply):

o requirements document
o conversations with the develop
o conversations with a requirements analyst
o conversations with a customer
o other (please specify)

T4. Do you have any entry criteria before you will
accept code into test? Please explain.
T5. Based upon your experience, how can you
compare the quality of JavaPOS device drivers coming
into test versus other products you have tested?

o Better
o Worse
o About the same
o I’ve never tested anything but JavaPOS

T6. Based on your answer to #5, can you explain the
differences you see based upon your knowledge of the
development process and/or the product itself?
T7. Based upon your experience, how can you
compare the quality of JavaPOS device drivers
delivered to the customer?

o Better
o Worse
o About the same
o I’ve never tested anything but JavaPOS

T8. Do you automate your tests?
o No
o Yes, using the following technology:

T9. If you are pressured for time and can’t run all the
tests you planned, how do you decide which test cases
to run?
T10. Please provide any additional comments on your
observations as a JavaPOS device driver tester.

