Java Collections Cheat Sheet

Notable Java collections
libraries

Fastutil

http://fastutil.di.unimi.it/

Fast & compact type-specific collections for Java
Great default choice for collections of primitive
types, like int or long. Also handles big
collections with more than 23" elements well.

Collection class

HashMap

Thread-safe alternative

ConcurrentHashMap

— ¥ REBEL

What can your collection do for you?

Your data

Individual | Key-value
elements pairs

X

Duplicate
element
support

Order of iteration

Primitive
support
B Sorted

X

TURNAROUND

Operations on your collections

Performant
‘contains’
check

Random access

By key

Byvalue By index

HashBiMap (Guava)

Maps.synchronizedBiMap
(new HashBiMap())

SIS

ArrayListMultimap

Maps.synchronizedMultiMap

Guava
https://github.com/google/guava

Google Core Libraries for Java 6+

Perhaps the default collection library for Java
projects. Contains a magnitude of convenient
methods for creating collection, like fluent
builders, as well as advanced collection types.

(Guava) (new ArrayListMultimap())
) Collections.synchronizedMap
Lkl e (new LinkedHashMap())
TreeMap ConcurrentSkipListMap * *

Int2IntMap (Fastutil)

ArrayList

CopyOnWriteArrayList

HashSet

Collections.newSetFromMap
(new ConcurrentHashMap<>())

IntArrayList (Fastutil)

Eclipse Collections
https://www.eclipse.org/collections/
Features you want with the collections you need
Previously known as gs-collections, this library
includes almost any collection you might

need: primitive type collections, multimaps,
bidirectional maps and so on.

PriorityQueue

PriorityBlockingQueue

XIS XIXTS XXX

ArrayDeque

ArrayBlockingQueue

SISISISTS XX XX
XI XXX XISISISIS|ISS

**

SISISIXSIXIX X SX X
SIXTSI XS X XS XXX
XIS XXX XS X XXX
SIXTS I XS XXX XXX

X

v
v
v
v
v
v
X
X
X
X
X

XX XS X XXX XS X
XIXTSIX SIS XX XXX

XX XIS XISIS|S

JCTools
https://github.com/|CTools/JCTools

Java Concurrency Tools for the JVM.

If you work on high throughput concurrent
applications and need a way to increase your
performance, check out JCTools.

* O(log(n)) complexity, while all others are O(1) - constant time

Collection class

ArraylList

HashSet

HashMap

TreeMap

Random access
by index / key

**when using Queue interface methods: offer() / poll()

How fast are your collections?

Search /
Contains

o(1) O(n) O(n)

o o(1) o)

o) o) o)
O(log(n) Olog(n) | Oflog(n)

of how to treat the Big-O complexity notation:

Remember, not all operations are equally fast.

Here's a reminder

0O(1) - constant time, really fast, doesn't depend on the

size of your collection

O(log(n)) - pretty fast, your collection size has to be

extreme to notice a performance impact

0O(n) - linear to your collection size: the larger your

collection is, the slower your operations will be

BROUGHT TO YOU BY

JRebel

http://fastutil.di.unimi.it/
https://github.com/google/guava
https://zeroturnaround.com/rebellabs/
http://zeroturnaround.com/software/jrebel/

