
How fast are your collections?

Collection class Random access
by index / key

Search /
Contains Insert Remember, not all operations are equally fast. Here’s a reminder

of how to treat the Big-O complexity notation:

O(1) - constant time, really fast, doesn’t depend on the
size of your collection

O(log(n)) - pretty fast, your collection size has to be
extreme to notice a performance impact

O(n) - linear to your collection size: the larger your
collection is, the slower your operations will be

ArrayList O(1) O(n) O(n)

HashSet O(1) O(1) O(1)

HashMap O(1) O(1) O(1)

TreeMap O(log(n)) O(log(n)) O(log(n))

Java Collections Cheat Sheet

Notable Java collections
libraries

Fastutil
http://fastutil.di.unimi.it/
Fast & compact type-specific collections for Java
Great default choice for collections of primitive
types, like int or long. Also handles big
collections with more than 231 elements well.

Guava
https://github.com/google/guava
Google Core Libraries for Java 6+
Perhaps the default collection library for Java
projects. Contains a magnitude of convenient
methods for creating collection, like fluent
builders, as well as advanced collection types.

Eclipse Collections
https://www.eclipse.org/collections/
Features you want with the collections you need
Previously known as gs-collections, this library
includes almost any collection you might
need: primitive type collections, multimaps,
bidirectional maps and so on.

JCTools
https://github.com/JCTools/JCTools
Java Concurrency Tools for the JVM.
If you work on high throughput concurrent
applications and need a way to increase your
performance, check out JCTools.

What can your collection do for you?

Collection class Thread-safe alternative

Your data Operations on your collections

Individual
elements

Key-value
pairs

Duplicate
element
support

Primitive
support

Order of iteration Performant
‘contains’

check

Random access

FIFO Sorted LIFO By key By value By index

HashMap ConcurrentHashMap

HashBiMap (Guava)
Maps.synchronizedBiMap

(new HashBiMap())

ArrayListMultimap
(Guava)

Maps.synchronizedMultiMap
(new ArrayListMultimap())

LinkedHashMap
Collections.synchronizedMap

(new LinkedHashMap())

TreeMap ConcurrentSkipListMap

Int2IntMap (Fastutil)

ArrayList CopyOnWriteArrayList

HashSet
Collections.newSetFromMap

(new ConcurrentHashMap<>())

IntArrayList (Fastutil)

PriorityQueue PriorityBlockingQueue

ArrayDeque ArrayBlockingQueue

* O(log(n)) complexity, while all others are O(1) - constant time		 ** when using Queue interface methods: offer() / poll()

*

**

*

**

**

http://fastutil.di.unimi.it/
https://github.com/google/guava
https://zeroturnaround.com/rebellabs/
http://zeroturnaround.com/software/jrebel/

